STRUCTURE CRISTALLINE DU MÉTHYL ÉTHYL *o*-MÉTHYLBENCHROTRÉNYL MÉTHANOL (F 66°C)

YVES DUSAUSOY, CLAUDE LECOMTE, JEAN PROTAS

Laboratoire de Minéralogie et Cristallographie, équipe de recherche associée au C N R.S., no 162, Faculté des Sciences, Centre de 2e cycle, Case Officielle no 140, 54037 Nancy Cedex (France) et JACK BESANÇON

I JACK BESANÇON

Laboratoire de Polarographie Organique associé au C N R.S no 33, Faculté des Sciences Gabriel, 6 boulevard Gabriel, 21000 Dijon (France)

(Reçu le 29 mars 1973)

SUMMARY

The crystalline structure of one diastereoisomeric (racemic) form of methylethyl-o-methylbenchrotrenylmethanol (F 66°C) has been determined by X-ray diffraction and used to support the discussion on asymmetric induction presented in an earlier paper (J. Organometal. Chem., 59 (1973) 267).

RÉSUMÉ

La structure cristalline de l'une des formes diastéréoisomères (racémiques) du méthyl éthyl o-méthylbenchrotrényl méthanol (F 66°C) a été déterminée par analyse cristallographique pour servir de support à une discussion sur l'induction asymétrique asymétrique présentée dans un précédent mémoire (J. Organometal. Chem., 59 (1973) 267).

INTRODUCTION

Nous avons discuté précédemment les problèmes d'induction asymétrique rencontrés lorsqu'on oppose les réactifs de Grignard à des cétones benchrotréniques chirales¹.

Il est apparu que l'identification des deux alcools diastéréoisomères F 82°C et F 66°C obtenus, soit selon : I ($R = CH_3$) + C_2H_5MgX , soit selon : I ($R = C_2H_5$) + CH_3 -MgX, ne pouvait s'appuyer sur les seules données spectroscopiques. En effet, même si l'on admettait comme certain que le groupe OH des deux alcools se place obligatoirement en *endo* par suite de l'existence d'une liaison hydrogène intramoléculaire

avec le reste $Cr(CO)_3$ l'analyse des données spectroscopiques ne permet pas d'aboutir à une conclusion définitive. Ces données spectroscopiques (RMN) ont été indiquées dans un précédent mémoire pour les deux alcools F 82°C et F 66°C et pour les alcools diméthylés et diéthylés analogues¹.

Une démarche, à priori, consisterait à tenter d'interpréter les différences spectrales en considérant l'effet d'interactions du type de Van der Waals qui entrainent en général un déblindage mutuel. On note en effet pour l'un des alcools diastéréoisomères (composé F 82°C):

(a) un déblindage (relatif) du groupe méthyle porté par le carbone fonctionnel : δ 1.64 ppm pour F 82 C et δ 1.58 ppm pour F 66°C.

(b) un déblindage (relatif) du proton porté en *ortho* du groupement fonctionnel (respectivement δ 5.99 et 5.54 ppm)

(c) un blindage (relatif) du méthyle inducteur (respectivement δ 2.38 et 2.49 ppm).

Ces trois effets s'interpréteraient aisément en considérant comparativement les encombrements de groupes et atomes intéressés et en admettant qu'on ait les correspondances: F $82^{\circ}C \equiv II$ et F $66^{\circ}C \equiv III$.

Mais les données relatives aux deux alcools diméthylés et diéthylés correspondants n'apparaissent alors plus cohérentes.

En particulier le signal du proton *ortho* de ces deux derniers composés résonne curieusement à des champs intermédiaires (respectivement δ 5.72 et 5.68 ppm). De plus, le signal du méthyle inducteur de l'alcool diméthylé a la même déplacement chimique que celui de l'isomère III qui placerait un groupement éthyle près de l'inducteur (δ 2.49 ppm).

Les critères spectroscopiques ne peuvent donc être considérés valablement pour identifier les alcools diastéréoisomères. Cette impossibilité nous a conduit à entreprendre une étude cristallographique sur la forme racémique de l'alcool F 66°C.

RÉSULTATS EXPÉRIMENTAUX ET RÉSOLUTION DE LA STRUCTURE

Le diastéréoisomère racémique F 66°C cristallise dans l'holoédrie du système monoclinique. Les paramètres de la maille sont : $a=6.71\pm0.01$ Å, $b=9.51\pm0.01$ Å, $c=22.11\pm0.03$ Å, $\beta=94^{\circ}26'\pm20'$, V=1413 Å³, $d_{calc}=1.40$, Z=4.

Les conditions régissant la présence des réflexions (k=2n sur 0k0 et l=2n sur h0l) conduisent au groupe d'espace $P2_1/c$.

L'enregistrement du réseau réciproque a été réalisé sur diffractomètre automatique en utilisant le rayonnement K_{α} du cuivre. Les 854 réflexions retenues pour la résolution de la structure satisfaisant au critère statistique $\sigma(I)/I < 0.4$ ont été corrigées des phénomènes de Lorentz et de polarisation. La structure a été résolue par une méthode directe de détermination de phase automatisée^{2,3,4}. Les sections de densité électronique, ayant pour coefficients de séries de Fourier les facteurs de structure normalisés, font apparaître le trépied carbonyle, l'atome de chrome et le noyau benzène. L'affinement des coordonnées atomiques de ces atomes affectés d'un facteur d'agitation thermique individuel conduit à un indice résiduel $R = 0.23^*$. Des sections

^{*} La liste des facteurs de structure observés et calculés est disponible au laboratoire de Minéralogie et de Cristallographie de la Faculté des Sciences de Nancy.

de densité électronique ont alors permis de déterminer les coordonnées des atomes manquants.

L'affinement par méthode de moindres carrés avec approximation diagonale

TABLEAU 1

COORDONNÉES FRACTIONNAIRES (×10⁵)

	x		v		Z	
					_	
Cr	01024	(21)	38532	(27)	35612	(8)
01	27233	(161)	24106	(108)	27187	(49)
O2	31546	(146)	33246	(125)	45708	(43)
O3	21904	(210)	65178	(124)	33333	(61)
O4	00278	(210)	05528	(143)	44253	(63)
CP1	17563	(231)	29984	(181)	30496	(72)
CP2	19516	(195)	35616	(155)	41605	(59)
CP3	13304	(271)	54800	(169)	34176	(62)
C1	- 27866	(190)	39238	(238)	29682	(62)
C2	- 28620	(217)	49615	(219)	33784	(70)
C3	- 25380	(191)	47362	(191)	40301	(71)
C4	- 21894	(182)	32721	(137)	42190	(62)
C5	- 20409	(205)	21220	(155)	37755	(53)
C6	- 23397	(218)	25266	(195)	31303	(68)
C7	- 16028	(339)	05792	(205)	39618	(72)
C8	- 19173	(226)	30684	(188)	49129	(55)
С9	33977	(324)	-01455	(349)	42744	(90)
C10	- 50813	(374)	-02444	(452)	38748	(95)
C11	-09410	(461)	-02975	(237)	34163	(83)

TABLEAU 2

TENSEUR D'AGITATION THERMIQUE (×10⁶)

	β_{11}	β22	β ₃₃	β_{12}	β_{13}	β23
Cr	030684	017133	002262	-002125	002233	000065
01	040890	023647	003987	007145	007610	000140
O2	030447	028322	003435	002372	-005378	005164
O3	058781	017263	005573	009589	007351	004314
O4	065194	028835	005666	-023320	007295	000507
CP1	025752	015101	003335	019013	003053,	-002384
CP2	031015	021705	002541	-013701	002100	-001106
CP3	044843	006421	003986	017306	014534	-005688
C1	023422	031964	002909	-003341	-002342	001366
C2	022636	018655	004224	016507	000177	000290
C3	024947	024275	004241	-006634	003683	000937
C4	021913	018565	002936	-002557	001260	003601
C5	022430	016961	002532	010001	003831	-002670
C6	017741	036552	002652	000081	001369	002240
C7	061044	028910	003792	-023238	-005363	007599
C8	035912	028262	001598	001996	000991	001530
С9	038589	049627	005667	016654	015025	005908
C10	060778	053217	004524	-009148	000405	002231
C11	103204	023072	005918	001433	022056	006055

TABLEAU 3

Cr-CP1	1.832	(16)	C1-C2	1 343	(26)
Cr-CP2	1 769	(13)	C2-C3	1 456	(22)
Cr-CP3	1.791	(17)	C3-C4	1 466	(22)
CP1-01	1.157	(20)	C4-C5	1 476	(19)
CP202	1 190	(16)	C5-C6	1 476	(19)
CP3-03	1 165	(20)	C6-C1	1 402	(28)
Cr-C1	2.259	(13)	C5-C7	1 545	(24)
Cr–C2	2.261	(16)	C7-C11	1.557	(28)
Cr-C3	2 279	(15)	C7-C9	1.589	(32)
Cr-C4	2 262	(13)	C9-C10	1.384	(30)
Cr-C5	2 259	(14)	C4-C8	1.543	(18)
Cr-C6	2 225	(16)	C7-O4	1.443	(23)
Cr-O4	3.675	(14)	O4-O2	3 36	(17)
Cr-C11	4.015	(22)	01-C11	3.95	(28)

DISTANCES INTERATOMIQUES ET ÉCARTS-TYPE (Å)

des coordonnées de chaque atome affecté d'un coefficient d'agitation thermique anisotrope conduit à un indice résiduel final de 0.078, si l'on tient compte de la diffusion anormale de l'atome de chrome.

Le Tableau 1 donne les valeurs des coordonnées fractionnaires de chaque atome et leurs écarts-type. Le Tableau 2 donne les coefficients du tenseur d'agitation thermique anisotrope de chaque atome selon l'expression:

$$T_{l} = \exp\left(-\beta_{11}h^{2} + \beta_{22}k^{2} + \beta_{33}l^{2} + \beta_{12}hk + \beta_{13}hl + \beta_{23}kl\right)$$

Le Tableau 3 donne les distances interatomiques et écarts-type.

CONFORMATION ET CONFIGURATION MOLÉCULAIRE

La conformation et la configuration relative de la molécule sont représentées sur la Fig. 1 qui est une projection normale au plan moyen défini par les six atomes du noyau benzénique.

Le trepied carbonyle

Le trépied carbonyle correspond à une coordination octaèdrique du chrome. Les angles entre les trois vecteurs O-C-Cr sont en effet de 89°, 88°, 88° (Tableau 4). Les distances Cr-C (carbonyle) sont comprises entre 1.77 et 1.83 Å ($\bar{\sigma}$ 0.015 Å), celles des liaisons C-O entre 1.15 et 1.19 Å ($\bar{\sigma}$ 0.020 Å), les distances Cr-O restent sensiblement constantes à 2.96-2.98 Å. Les angles de liaisons Cr-C-O ont une valeur moyenne de 176° ($\bar{\sigma}$ 1.4°). Les angles entre les trois atomes de carbone ou les trois atomes d'oxygène avec le plan moyen du noyau benzénique sont de 1.6° et 2.4°. Ces plans sont donc parallèles. Enfin le trépied carbonyle est en position éclipsée par rapport au carbone C4 porteur du substituant méthylé. Cette conformation reflète l'effet électronique cumulatif prévisible qualitativement pour les deux substituants CH₃ et -C(OH)-(C₂H₅)CH₃ car on sait que les prolongements des vecteurs O-C-Cr pointent vers les sommets du ligande qui présentent la densité électronique maximale. Ce résultat est en accord avec ceux trouvés dans les conformations moléculaires des deux éthyl phényl *o*-méthylbenchrotrényl méthanols⁵ de points de fusion F 89°C et F 163°C.

TABLEAU 4

ANGLES DE LIAISONS ET ÉCARTS-TYPE (°)

Cr-CP1-O1	176 5	(1 4)	C1-C2-C3	123 3	(1 5)
Cr-CP2-O2	177.5	(1.2)	C2-C3-C4	115.5	(1.3)
Cr-CP3-O3	177.6	(1.4)	C3-C4-C5	122.0	(12)
CP1-Cr-CP2	88.2	(0.7)	C4-C5-C6	115.9	(1.2)
CP2-Cr-CP3	878	(07)	C5-C6-C1	120 3	(14)
CP1-Cr-CP3	88.0	(07)	C6-C1-C2	123 0	(1.3)
O1-Cr-O2	89 2	(0.3)	C4-C5-C7	123 1	(1.2)
O2-Cr-O3	879	(0 3)	C6-C5-C7	1209	(13)
O1-Cr-O3	88 7	(0.3)	C5-C7-O4	108.9	(14)
C1-Cr-C2	34.6	(06)	C5-C7-C11	111 1	(15)
C2-Cr-C3	37 4	(0.6)	C5-C7-C9	113.1	(1.5)
C3-Cr-C4	37 7	(0.5)	С11-С7-С9	111.9	(1.7)
C4-Cr-C5	38 1	(0 5)	O4-C7-C9	104 1	(1.6)
C5-Cr-C6	38 4	(05)	O4-C7-C11	107.2	(1.6)
C6-Cr-C1	36.4	(06)	C3-C4-C8	1140	(1.2)
			C5-C4-C8	123.9	(1.2)

Les substrats organiques

Le noyau benzène complexé ne semble pas régulier puisque les distances sont comprises entre 1.34 et 1.47 Å et les angles entre 116 et 123°, les valeurs élevées des écarts-type ($\bar{\sigma}$ 0.022 Å et 1.3°) n'autorisant pas à en tirer des conclusions. Le noyau benzène reste plan puisqu'aucun atome de carbone ne s'écarte de plus de 0.02 Å du plan moyen défini par les six atomes de carbone (Tableau 5). Le carbone C8 du méthyle est distant de 0.04 Å en position *exo* et l'angle C5–C4–C8 est de 124°. Le carbone asymétrique C7 se place exactement dans le plan moyen benzénique (-0.005 Å). La valeur des angles de liaison de ce carbone s'écarte sensiblement de la valeur théorique de 109° (Tableau 4). Le radical éthyle est en position *exo*. Le plan C7–CH₂–CH₃ forme un angle de 77° avec le plan du noyau. Le carbone C11 du radical méthyle est en position *endo*, l'angle du plan C5–C7–C11 avec le plan benzénique est de 17°.

TABLEAU 5

		5					
C1	0.017 Å	C6	-0 020	CP1	-2.824	С9	1.370
C2	0.002	Cr	- 1.741	CP2	-2 776	C10	2.405
C3	-0.020	01	- 3.451	CP3	-2843	C11	-0 436
C4	0 022	O2	- 3 437	C7	-0005	04	-0969
C5	-0.001	O3	- 3.595	C8	0 040		
Équat C5-C C7-C C5-C Angle benzé et	ton des plans 7-C11 - 9-C10 0, 7-O4 1,2 entre le plan nique complex	$ \begin{array}{c} -2.1058:\\ .67156x\\ 48803x-\\ 48803x-\\ le\\ ké \begin{cases} le\\ le\\ le \end{cases} $	5x - 0.53625y - 1.84014y - 1 - 0.14908y - 1 plan C5-C7 plan C7-C9 plan C5-C7	$\begin{array}{r} -0.56318z\\ 0.61536z = \\ 48695z = \\ -C11 \cdot 17\\ -C10 : 100.\\ -O4 \cdot 135.0\end{array}$	= - 1.57815 7 54706 - 15.63803 2° 6° 0°		

Enfin l'oxygène de la fonction alcool est également en position *endo*. La distance de l'oxygène au plan moyen benzénique est de 0.096 Å et la distance O...Cr est de 3.66 Å. Ces valeurs sont très voisines de celles trouvées dans les deux éthyl phényl *o*-méthylbenchrotrényl méthanols⁵: 0.079 Å et 0.079 Å; 3.78 et 3.74 Å. Par contre il existe une différence sensible entre les distances O-O intermoléculaires des groupes OH. Pour les alcools qui portent un groupe phényle et un groupe éthyle sur le carbone fonctionnel, ces distances sont respectivement 3.14 Å pour la forme monoclinique (F 163°C) et 2.94 Å pour la forme triclinique (F 89°C).

ÉQUATION DU PLAN MOYEN BENZÈNIQUE -1 61165x - 0.26924y + 0.05703z = 3.14097

Fig 2

Pour l'alcool F 66°C qui porte un groupe méthyle et un groupe éthyle sur ce même carbone fonctionnel la distance est de 2.75 Å (Fig. 2.).

La distance 2.75 Å (et à la rigueur 2.94 Å) deviennent compatibles avec l'existence d'un pont hydrogène intermoléculaire.

Nous avons recherché des manifestations éventuelles de cette différence dans l'allure des spectres infrarouges. Pour des solutions contenant 15 mg de produit dans 1 cm^3 de CCl₄ les morphologies des spectres des divers alcools différent sensiblement.

Pour les deux alcools portant un groupe phényle, on observe deux pics nettement caractérisés, soit, respectivement : 3595 (faible) et 3570 cm⁻¹ (fort) pour F 163°C; 3610 (fort) et 3560 cm⁻¹ (faible) pour F 89°C.

Pour l'alcool F 66°C portant un groupe méthyle, on observe un seul pic à 3600 cm^{-1} et une bande large à des fréquences plus faibles. Il en est de même pour son isomère F 82°C.

Ces données indiquent bien la possibilité d'une liaison hydrogène intermoléculaire pour les alcools de la deuxième série. Dans cette hypothèse le proton de la fonction alcool ne doit plus être engagé dans une liaison O...Cr.

Pour vérifier cette hypothèse, nous avons étudié systématiquement les sections de densité électronique. Ces études n'ont pas permis de placer le proton intéressé avec certitude.

Configurations relatives

Si on adopte la nomenclature absolue systématique proposée par Schlögl⁶ puis Gautheron et Broussier⁷, l'alcool étudié (F 66°C) est l'espèce racémique éthyl méthyl *o*-benchrotrénylméthanol (RpSc+SpRc). L'alcool diastéréoisomère F 82°C est donc l'espèce racémique (SpSc+RpRc).

CONCLUSION

Les divers résultats discutés dans ce mémoire ont montré que la détermination des configurations relatives des alcools benchrotréniques ne peuvent être établies à priori par la considération des seules données spectroscopiques. Seule l'analyse cristallographique apporte une réponse définitive aux problèmes configurationnels.

BIBLIOGRAPHIE

- 1 J Besançon, J. Tirouflet, Y Dusausoy et A Card, J Organometal Chem, 59 (1973) 267
- 2 G Germain et M. M. Woolfson, Acta Cryst., B24 (1968) 91
- 3 G. Germain, P Main et M. M Woolfson, Acta Cryst., B26 (1970) 274
- 4 G Germain, P. Main et M M. Woolfson, Acta Cryst, A27 (1971) 368
- 5 Y Dusausoy, J Protas et J Besançon, J. Organometal. Chem, 59 (1973) 281
- 6 K. Schlogl, Fortschr Chem Forsch, 6 (1966) 479
- 7 B Gautheron et R Broussier, Bull Soc. Chim. Fr, (1971) 3636